我们开发了增强学习(RL)框架,用于通过稀疏,用户解释的更改来改善现有行为策略。我们的目标是在获得尽可能多的收益的同时进行最小的改变。我们将最小的变化定义为在原始政策和拟议的政策之间具有稀疏的全球对比解释。我们改善了当前的政策,以使全球对比解释的简短限制。我们使用离散的MDP和连续的2D导航域来演示我们的框架。
translated by 谷歌翻译
确定数据集中的有意义和独立因素是一个充满挑战的学习任务,经常通过深度潜变量模型解决。可以将此任务视为保留所选属性的值的学习对称转换沿潜在维度。然而,现有方法在实施潜在空间中的不变性属性方面表现出严重的缺点。我们以一种新的方法来解决这些缺点来循环一致性。我们的方法涉及目标属性的两个单独的潜在子页和剩余的输入信息。为了强制执行潜伏空间中的不变性以及稀疏性,我们通过使用依赖属性侧信息的周期一致性约束来融合语义知识。该方法基于深度信息瓶颈,与其他方法相比,允许使用连续目标属性并提供固有的模型选择能力。我们展示了我们的方法识别出更有意义的因素的综合和分子数据,这导致稀疏和更具可解释的模型,具有改善的不变性属性。
translated by 谷歌翻译
Learning-to-defer is a framework to automatically defer decision-making to a human expert when ML-based decisions are deemed unreliable. Existing learning-to-defer frameworks are not designed for sequential settings. That is, they defer at every instance independently, based on immediate predictions, while ignoring the potential long-term impact of these interventions. As a result, existing frameworks are myopic. Further, they do not defer adaptively, which is crucial when human interventions are costly. In this work, we propose Sequential Learning-to-Defer (SLTD), a framework for learning-to-defer to a domain expert in sequential decision-making settings. Contrary to existing literature, we pose the problem of learning-to-defer as model-based reinforcement learning (RL) to i) account for long-term consequences of ML-based actions using RL and ii) adaptively defer based on the dynamics (model-based). Our proposed framework determines whether to defer (at each time step) by quantifying whether a deferral now will improve the value compared to delaying deferral to the next time step. To quantify the improvement, we account for potential future deferrals. As a result, we learn a pre-emptive deferral policy (i.e. a policy that defers early if using the ML-based policy could worsen long-term outcomes). Our deferral policy is adaptive to the non-stationarity in the dynamics. We demonstrate that adaptive deferral via SLTD provides an improved trade-off between long-term outcomes and deferral frequency on synthetic, semi-synthetic, and real-world data with non-stationary dynamics. Finally, we interpret the deferral decision by decomposing the propagated (long-term) uncertainty around the outcome, to justify the deferral decision.
translated by 谷歌翻译
我们旨在通过引入全面的分布式深度学习(DDL)探索器来解决此问题,该研究人员可以确定DDL在公共云上运行时遭受的各种执行“失速”。我们已经通过扩展先前的工作来估算两种类型的通信失速 - 互连和网络摊位来实现剖面。我们使用Profiler培训流行的DNN模型来表征各种AWS GPU实例,并列出了用户做出明智决定的优势和缺点。我们观察到,较昂贵的GPU实例可能不是所有DNN型号的性能最多,并且AWS可能会在次优的硬件互连资源分配次优。具体而言,与单个实例的培训相比,机内互连可以引入高达90%的DNN培训时间和网络连接的实例的通信开销,而与网络连接的实例可能会遭受高达5倍的速度。此外,我们对DNN宏观特征的影响进行建模,例如层的数量和通信摊位上的梯度数量。最后,我们为用户提出了一个基于衡量的建议模型,以降低DDL的公共云货币成本。
translated by 谷歌翻译
由于医疗保健是关键方面,健康保险已成为最大程度地减少医疗费用的重要计划。此后,由于保险的增加,医疗保健行业的欺诈活动大幅增加,欺诈行业已成为医疗费用上升的重要贡献者,尽管可以使用欺诈检测技术来减轻其影响。为了检测欺诈,使用机器学习技术。美国联邦政府的医疗补助和医疗保险服务中心(CMS)在本研究中使用“医疗保险D部分”保险索赔来开发欺诈检测系统。在类不平衡且高维的Medicare数据集中使用机器学习算法是一项艰巨的任务。为了紧凑此类挑战,目前的工作旨在在数据采样之后执行功能提取,然后应用各种分类算法,以获得更好的性能。特征提取是一种降低降低方法,该方法将属性转换为实际属性的线性或非线性组合,生成较小,更多样化的属性集,从而降低了尺寸。数据采样通常用于通过扩大少数族裔类的频率或降低多数类的频率以获得两种类别的出现数量大约相等的频率来解决类不平衡。通过标准性能指标评估所提出的方法。因此,为了有效地检测欺诈,本研究将自动编码器作为特征提取技术,合成少数族裔过采样技术(SMOTE)作为数据采样技术,以及各种基于决策树的分类器作为分类算法。实验结果表明,自动编码器的结合,然后在LightGBM分类器上获得SMOTE,取得了最佳的结果。
translated by 谷歌翻译
森林是每个国家的重要资产。当它被摧毁时,它可能会对环境产生负面影响,而森林大火是主要原因之一。火灾天气指数被广泛用于测量火灾危险,并用于发出丛林大火警告。它也可以用来预测应急管理资源的需求。传感器网络在数据收集和处理能力方面已越来越受欢迎,用于医疗,环境监测,家庭自动化等行业的各种应用。语义传感器网络可以收集各种气候情况,例如风速,温度和相对湿度。但是,由于处理传感器生成的数据流涉及的各种问题,估计火灾指数构成了挑战。因此,森林火灾检测的重要性日复一日增加。构建了基础语义传感器网络(SSN)本体,以允许开发人员创建用于计算火灾天气指数的规则,并将数据集转换为资源描述框架(RDF)。这项研究描述了制定计算火灾天气指数的规则所涉及的各个步骤。此外,这项工作提供了一个基于Web的映射接口,以帮助用户可视化随着时间的推移,火灾天气指数的变化。在推论规则的帮助下,它使用SSN本体论设计了决策支持系统,并通过SPARQL查询了它。拟议的消防管理系统根据情况采取行动,支持推理和开放世界的一般语义,然后是所有本体论
translated by 谷歌翻译
近期目睹了机器学习算法系统的快速发展,尤其是加强学习,自然语言处理,计算机和机器人视觉,图像处理,语音和情感处理和理解。凭借机器学习模型,算法及其应用的越来越重要和相关性,并且随着更多创新使用的深度学习和人工智能的情况,目前的体积呈现出一些创新研究工作及其在现实世界中的应用,如股票交易,医疗和医疗保健系统和软件自动化。本书中的章节说明了如何设计,优化和部署机器学习和深度学习算法和模型。该体积对于高级毕业生和博士生,研究人员,大学教师,练习数据科学家和数据工程师,专业人士和顾问以及在机器学习,深度学习和人工智能的广泛领域。
translated by 谷歌翻译
深度学习为生物医学图像分割带来了最深刻的贡献,以自动化医学成像中描绘的过程。为了完成此类任务,需要使用大量注释或标记数据来训练模型,这些数据突出显示与二进制掩码的感兴趣区域。然而,有效地产生这种庞大数据的注释需要专家生物医学分析师和广泛的手动努力。这是一个繁琐而昂贵的任务,同时也容易受到人类错误的影响。为了解决这个问题,提出了一种自我监督的学习框架,BT-UNET,以通过以无监督的方式通过冗余的方式预先训练U-Net模型的编码器来预先训练U-Net模型的编码器来学习数据表示。稍后,完整的网络精确调整以执行实际分段。 BT-UNET框架可以在具有有限数量的注释样本的同时训练,同时具有大量未经发布的样本,这主要是现实世界问题的情况。通过使用标准评估指标生成有限数量标记的样本的场景,通过多个U-Net模型通过多个U-Net模型进行验证。通过详尽的实验试验,观察到BT-UNET框架在这种情况下提高了U-NET模型的性能,具有重要利润。
translated by 谷歌翻译
深度学习技术的进步为生物医学图像分析应用产生了巨大的贡献。随着乳腺癌是女性中最致命的疾病,早期检测是提高生存能力的关键手段。如超声波的医学成像呈现出色器官功能的良好视觉表现;然而,对于任何分析这种扫描的放射科学家,这种扫描是挑战和耗时,这延迟了诊断过程。虽然提出了各种深度学习的方法,但是通过乳房超声成像介绍了具有最有效的残余交叉空间关注引导u-Net(RCA-IUnet)模型的最小训练参数,以进一步改善肿瘤分割不同肿瘤尺寸的分割性能。 RCA-IUNET模型跟随U-Net拓扑,剩余初始化深度可分离卷积和混合池(MAX池和光谱池)层。此外,添加了交叉空间注意滤波器以抑制无关的特征并专注于目标结构。建议模型的分割性能在使用标准分割评估指标的两个公共数据集上验证,其中它表现出其他最先进的分段模型。
translated by 谷歌翻译
脑肿瘤是最常见和最致命的疾病,可在所有年龄组中发现。通常,采用MRI模态来通过放射科医师鉴定和诊断肿瘤。肿瘤区域的正确鉴定及其类型可以帮助诊断随访治疗计划的肿瘤。然而,对于任何分析这种扫描的放射科学家是一种复杂且耗时的任务。基于深度学习的计算机辅助诊断系统的动机,本文提出了使用MRI图像对脑肿瘤区域进行分类和分割脑肿瘤区域的多任务注意力引导的编码器。Mag-Net培训和评估了图的图解数据集,包括冠状,轴向和矢状瘤,具有3种肿瘤脑膜瘤,胶质瘤和垂体肿瘤。通过详尽的实验试验,模型与现有最先进的模型相比,实现了有希望的结果,同时在其他最先进的模型中具有至少数量的培训参数。
translated by 谷歌翻译